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Abstract— The socially optimal power market clearing 

problem with diverse, complex-utility-structure participants at 

the distribution level, poses computational challenges that are 

exacerbated by the associated non-convex load flow constraints. 

We investigate variations and extensions of Proximal Message 

Passing algorithms proposed in the literature and implemented 

on similar, though simpler, social welfare function 

instantiations. Numerical results demonstrate that (i) in 

comparison to solving a computationally demanding, yet exact, 

centralized market clearing problem, significant computational 

improvements are possible with the proposed PMP algorithm 

extensions, (ii) comparison to the benchmark results obtained 

by solving the centralized formulation reveals that excellent 

accuracy is attainable by the PMP algorithms and (iii) in 

comparison to the PMP algorithms existing in the literature, 

the proposed extension reduces significantly the 

communication requirements for sub-problem coordination 

and convergence verification and enables faster converging 

asynchronous sub-problem iterations.  

I. INTRODUCTION 

Increased computation and communication capabilities in 
today’s cyber-enabled smart power grid, and the promise of 
distributed generation, demand response and other distributed 
resources such as EVs that will be able to mitigate the cost of 
renewable generation volatility,  have peaked interest in 
distribution network power markets [1,8].  

In  [1], we formulated and solved numerically the full AC 

optimal power flow (OPF) problem for a moderate size 

distribution network with complex participants. More 

specifically, we used a radial distribution network consisting 

of two feeders: a primary voltage industrial feeder with 47 

busses published in [5] and a secondary voltage 

commercial/residential feeder with 206 busses that we 

created by expanding the industrial feeder to include primary 

to secondary voltage transformers and secondary voltage 

lines serving commercial and residential loads. Both feeders 

have distributed PV generation with power electronics 

rectifiers that can be put to dual use providing reactive power 

compensation and voltage control as needed. They also 

feature capacitors dedicated to reactive power compensation, 

and conventional loads with fixed load factors. Finally, the 

cost of loss of transformer life from overloading, the 

opportunity cost of providing reactive power and higher 

voltage at the substation are also modeled. 
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The non-convexities inherent in the AC load flow 
equations are major contributors to the computational 
complexity of the AC OPF problem that is essentially 
equivalent to the socially optimal market clearing problem 
[3,4,8]. The computational burden of the numerical solutions 
reported in [1] is further exacerbated by the detailed 
modeling of the diverse and complex cost and capability 
structures of the distribution market participants, such as 
encountered in loads that involve power electronics (EVs, 
PV, variable speed drive HVAC) and have storage like 
degrees of freedom. At a real size urban scale application, 
where thousands of active distributed market participants will 
be involved, centrally solved market clearing problems 
become intractable.  

In this paper, we investigate an alternate, decentralized 

yet iterative problem formulation based on  the Proximal 

Message Passing (PMP) algorithm by Boyd et al, [2] which is 

in principle scalable under parallel computation 

implementations. We borrow most of our notation from [2]. 

Distributed optimization methods applied to power systems 

have focused either on dual decomposition to take advantage 

of separability, or on  augmenting the Lagrangian in order to 

take advantage of milder convergence conditions. The 

Proximal Message Passing formulation uses the Alternating 

Method of Multipliers [11] which in essence combines 

decomposability and convergence robustness. In the PMP 

algorithms,  market participants (loads, generators, etc) as 

well as distribution network components (lines, transformers, 

etc), denoted collectively as devices, solve in parallel device-

specific optimization sub-problems reflecting their own cost 

and capability structure as well as imbalances with 

neighboring devices.  Devices exchange messages with their 

neighbors at each iteration. The iterative PMP problem is 

completely decentralized allowing solution of all sub-

problems in parallel. If the iterations are implemented in a 

synchronous fashion, a global scale coordination is needed in 

the form of a common clock controlling the iteration count 

and determining global convergence. Under such global 

coordination and the condition that individual sub-problems 

are convex, the algorithm is guaranteed to converge [2,6].  
In this paper we consider modifications and extensions to 

both the market complexity that is modeled and the PMP 
algorithm specifics used in [2].  While [2] is mostly a proof 
of concept that PMP can be applied to the solution of the AC 
load flow based power market clearing problem, we employ, 
as noted, a detailed and more realistic diverse market 
participant model. For example, we add variables (like 
reactive power profiles) and relax simplifying assumptions 
such as constant voltage and line flow approximations. Our 
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market clearing PMP formulation is able to capture the exact 
same solution obtained by our centralized non-convex AC 
OPF based benchmark in [1]. 

We note related work in [7] which applies distributed 
algorithms to a market model that is closest to ours. Contrary 
to our model, [7] decomposes the centralized problem to bus-
specific subproblems, which are fewer than the device 
specific subproblems in the PMP algorithm we use. In doing 
so, [7] does not model continuously schedulable real and 
reactive power providing resources. To do so, more 
optimization problems would have to be solved externally at 
the level of the bus aggregator. In addition, [7] does not 
model voltage decisions at the substation bus, and its 
convexification requirements impose voltage magnitude 
constraints only from below. It also restricts power flow 
reversal.  

 This paper’s contribution is the proposal and 
performance evaluation (w.r.t. computational as well as 
communication requirements) of Proximal Message Passing 
(PMP) algorithm extensions and variations relative to 
published distributed algorithms, most notably, among 
others, in [2] and [7]. The PMP extensions proposed here 
include:  
● The introduction of net specific penalty factors that drive 

discrepancies in real and reactive power, voltage and voltage 
phase angles to zero at each net. Three alternative  penalty  
adaptation methods are used: (i) centrally with a single 
penalty used across the whole network , (ii) in a distributed 
fashion for each net, and (iii) finally in a distributed fashion 
for each net and each of the key quantities, namely real 
power, reactive power, voltage level and phase angle. 
● Using a convergence criterion based on (i) either a 

network-wide, centrally evaluated tolerance or (ii) a location 
specific tolerance, evaluated in a distributed manner.  
● Although not implemented here, the above enables 

asynchronous parallel processing. 
Numerical results demonstrate that (i) in comparison to 

solving a computationally demanding, yet exact, centralized 
market clearing problem, significant computational 
improvements are possible with the proposed PMP algorithm 
extensions, (ii) comparison to the centralized solution 
considered as a benchmark shows that the PMP algorithm 
converges to an arbitrarily close result, and (iii) relative to 
PMP algorithms reported in the literature, the PMP extension 
proposed in this work has significantly reduced global 
coordination and communication requirements.  

The rest of this paper is organized as follows: Section II 
formulates the market clearing problem, Section III presents 
the proposed algorithm. Section IV reports on computational 
results and the demonstrated properties, and Section V 
concludes. 

II. PROBLEM FORMULATION 

We solve the hour-ahead distribution market clearing 

problem which schedules real and reactive nodal power 

injections that minimize: 

(i) the cost of real power procured at the substation, plus  

(ii) the cost of  substation voltage increase that may be 

required for compliant voltage magnitudes throughout the 

network, minus  

(iii) real power consumer utility, plus  

(iv) substation generator opportunity cost associated with 

providing the reactive power reaching the substation, plus  

(v) the cost of transformer loss of life, plus  
(vi) distributed generation costs, 

subject to: 
(i) AC load flow relationships,  
(ii) real and reactive power injections by loads and 

generators,  
(iii) power conditioning assets accompanying loads such 

as asynchronous motor HVAC systems, PV installations, 
elevator banks, and lastly  

(iv) voltage magnitude constraints. 

This centralized market clearing problem was solved for the 

253 bus distribution network in [1] and is used here as a 

benchmark. As mentioned already, the centralized solution of 

[1] is not scalable to real distribution systems. The remainder 

of this section presents the detailed formulation of   several 

parallelizable PMP algorithm that are scalable. 

A. Parallelizable Network Representation 

First, we need to redefine the network elements such that 

their  properties can be easily used in the concept of proximal 

message passing algorithms.  

We follow [2], in decomposing the distribution network 

and market participants to devices a, terminals t and nets n. 

Each device and each net has a set of terminals associated 

with it. Each terminal is associated with exactly one device 

and exactly one net. Devices model market participants (such 

as generators, loads, power electronics, etc.) and network 

components, (such as lines, transformers, etc). Nets are 

lossless energy carriers, the equivalent of busses. At each net, 

real and reactive power balance, phase consistency and 

voltage consistency are required. We visualize message 

passing, or communication of information across the network 

as taking place over a bipartite graph, where, the devices and 

the nets are the two classes of vertices while the terminals are 

the edges connecting them. This enables the distributed 

nature of the PMP algorithm where devices solve their own 

sub-problems, communicate their tentative results to their 

neighbors by passing them to nets that they are associated 

with, and iterate until imbalances and inconsistencies at the 

nets are eliminated. Notation is summarized next.  

 

B. Notation Conventions 

, , ,i i i id g f e : Subscripts denoting respectively a specific 

distributed load, distributed generation, shunt capacitor or 

distributed power electronics.  

,
i ig dc u : Marginal Cost and marginal Utility, respectively, 

associated with generation type/load type ,i ig d  . 

id : fixed current/voltage phase shift introduced by load 
id  

Vc : cost of substation voltage rise 


: Substation Locational Marginal Price. We consider a 

decoupling of the transmission system from distribution 

feeders that are connected to a transmission bus with a known 

Locational Marginal Price (LMP). As such, we treat the LMP 

at the substation bus as an exogenously specified quantity. 



  

, , ,
i i ig f eC C C C

: Capacity of reactive power compensating 

generator at the substation bus, distributed generator
ig , 

capacitor 
if , and power electronics 

ie  .  

k: iteration count 
t, a, n: terminal, device and net subscript 
T: total number of terminals in the network 

,n a : number of terminals associated with net n or device 

a 

,n at t : set of terminals t associated with net n or device a 

1 2 1 2, ,,t t t tR X : per unit series resistance, reactance of line 

1 2,t t  

1 2 1 2, ,,t t t tI : line 1 2,t t current and current magnitude squared. 

1 2,

tr

t tc : Cost of one hour of transformer 1 2,t t  economic life 

1 2,

N

t tS : Apparent flow rating of transformer 1 2,t t  

1 2 1 21, , 2, ,,t t t tk k : Transformer 1 2,t t  hottest spot temperature 

coefficients. 
k : Penalty factor for the network at iteration k 

k

n : Penalty factor specific to net n at iteration k 

, , ,, ,k k k

n P n Q n V   : Penalty factor specific to net n and to real 

power, reactive power or voltage respectively at iteration k 

tp : real power injected at terminal t. 0tp  refers to real 

power consumption, while 0tp   refers to real power 

generation. 

iep : real power generated by distributed PV generator ie  

(i.e. 0
iep  ). We consider this to be exogenously specified, 

i.e. 
iep  is a known constant. 

idp : fixed real power demand of constant load id  (i.e. 

0
idp  ) 

ap : 1a   vector with elements ,t ap t t   

np : 1n   vector with elements ,t np t t   

'

'

1
ˆ ,

n

t t n

t t

p p t t
n 

  : real power imbalance at t 

ˆ
ap : 1a   vector with elements ˆ ,t ap t t   

ˆ
np : 1n   vector with elements ˆ ,t np t t   

t : phase of terminal t 

aθ : 1a   vector with elements ,t at t    

nθ : 1n   vector with elements ,t nt t    

'

'

1
,

n

t t t n

t t

t t
n

  


   : phase residual at terminal t 

aθ : 1a   vector with elements ,t at t   

nθ : 1n   vector with elements ,t nt t   

tq : reactive power schedule of terminal t. 0tq  refers to 

reactive power consumption, while 0tq   refers to reactive 

power generation. 

idq : fixed reactive power demand of constant load id  (i.e. 

0
idq  ) 

aq : 1a   vector with elements ,t aq t t   

nq : 1n   vector with elements ,t nq t t   

'

'

1
ˆ ,

n

t t n

t t

q q t t
n 

  : reactive power imbalance at  

ˆ
aq : 1a   vector with elements ˆ ,t aq t t   

ˆ
nq : 1n   vector with elements ˆ ,t nq t t   

tV : voltage at terminal t 

tv : voltage magnitude squared of terminal t 

av : 1a   vector with elements ,t av t t   

nv : 1n   vector with elements ,t nv t t   

'

'

1
,

n

t t t n

t t

v v v t t
n 

   : voltage residual at terminal t 

av : 1a   vector with elements ,t av t t   

nv : 1n   vector with elements ,t nv t t   

ˆ ˆ( , , , )k k k k kr p q V θ : 4 1T   vector of imbalances of 

real power and reactive power, and voltage magnitude and 
phase angle residuals across all terminals at iteration k 

ˆ ˆ( , , , )k k k k k

n n n n nr p q V θ : 4 1n   vector of imbalances of 

real power and reactive power, and voltage magnitude and 
angle residuals at net n and iteration k  
 

-1 -1 -1 -1 -1 -1ˆ ˆˆ ˆˆ ˆ ˆ ˆ :
k k k k k k k k k k k k k

s = [(p - p ) - (p - p ), (q - q ) - (q - q ), V - V , θ - θ ]

4 1T   vector of the change of imbalance across all 

terminals at iteration k 
-1 -1 -1 -1 -1 -1ˆ ˆˆ ˆˆ ˆ ˆ ˆ :

k k k k k k k k k k k k k

n n n n n n n n n n n n n
= [(p - p ) - (p - p ), (q - q ) - (q - q ), V - V , θ - θ ]s

4 1n  vector of the change of imbalance at net n, iteration k 

a : device a objective function with all device specific 

constraints appended to it 

, , ,    : scaled shadow prices of real and reactive energy 

balance, and voltage and phase consistency constraints. 
 



  

C. Proximal Message Passing 

Given the definitions above, and the classification of 
network components and market participants to nets, devices 
and terminals, we next describe device instances or types: 

Substation Generator: Single terminal device. Assuming 
that this generator’s variable costs are negligible relative to 

the LMP,
, the cost of the substation generator is related to 

its revenues from whole sale market sales at the prevailing 
LMP plus the opportunity cost of the requisite reactive power 
compensation, plus voltage rise costs,  

2 2 2( ) ( ) ( 1)V

t t tp C C q c v            while 

constraints are the generator’s capacity limits, 
2 2 2

t tp q C   and the voltage magnitude limits, 

tV V V  . 

Fixed load: Single terminal device. No cost for this 
device. The constraints are the exogenously specified real 
and reactive power injected at its terminal,

,
i it d t dp p q q  , and the voltage magnitude limits 

tV V V  . 

Curtailable load: Single terminal device. The cost of this 
device is the negative utility derived when it is scheduled to 

consume at 
t

p , namely, 
id t

u p . Voltage magnitude 

constraints, 
tV V V  , fixed power factor reactive power 

consumption, tan( )
it t d

q p   and capacity limits 

i id t d
p p p   constitute the associated constraints. 

AC lines: Two terminal devices. No cost for this device. 
The constraints are voltage magnitude constraints 

tV V V   and typical load flow constraints: 

1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2

2

, , , ,
cos( ) sin( )

t t t t t t t t t t t t t t t t t
P V G V V G V V B       

1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2

2

, , , ,
cos( ) sin( ).

t t t t t t t t t t t t t t t t t
Q V B V V B V V G       

 Transformers: Two terminal devices. The cost of this 
device is the cost of transformer loss of life, 

1 2

1 1

1 2 1 2

1 2

, 2 2

1, , 2, , 2

,

15000 15000
exp( )

383
273

( )

tr

t t

t t

t t t t N

t t

c
p q

k k
S




 

. The 

constraints are the same as in AC lines, i.e. load flow and 
voltage magnitude constraints.  

Photovoltaics: Single terminal devices. No cost for this 
device. Constraints involve capacity limits given the 

exogenously specified real power output, 
iep  , yielding 

2 2 2

i ie t ep q C  , and the voltage magnitude constraints 

tV V V  .  

Capacitors: Single terminal devices. No cost for this 
device. Constraints involve its capacity 

0, 0
it f tp C q     and the voltage magnitude limits 

tV V V  . 

We proceed by using a generalized notion of the device 
objective function by appending the individual device 
constraints to its costs. For example, the generalized 
substation generator cost function is: 

2 2 2

2 2

2

( ) ( ) ( )

( 1) 1 1 1
t tt t

a a a a a t t

V

t V V V Vp q C

p C C q

c V M M M

  



   

   

    

    

p ,q , V ,θ
 

Where M is a large number increasing the cost to infinity 

when a constraint is violated.  

The generalized cost function and the classification of 

distribution market participants and network components to 

nets, devices and terminals, gives the following equivalent 

formulation of the AC Optimal Power Flow problem: 

 

min ( ) ( )

ˆ ˆ, ; ,

, ; ,

min ( ) ( ) ( ) ( ) ( )

;

;

a a a a a

a

n n n n n n n n

n

subject to n n

n n

g z f w k h

subject to

 

  



  

 

   

 

 












n n

n n

P Q

V θ

p,q, V,θ p ,q ,V ,θ

p = 0 q = 0

V = 0 θ = 0

p,q, V,θ

p = z y q = w y

V = ζ y θ = ξ y

 Where ( )n ng z , ( )n nf w , ( )n nk  , and ( )n nh   are the 

indicator functions respectively on the sets ˆ{ | 0}n nz z  , 

ˆ{ | 0}n nw w  , { | 0}n n   and { | 0}n n   . This 

allows us to write the  Lagrangian as: 

 

2 2 2 2

2 2 2 2

( ) ( )

( ) ( ) ( ) ( )

2 2 2 2

a a a a a

a

n n n n n n n n

n

L

g z f w k h



 

   
   



   







P Q V θ

P Q V θ

p, q, V,θ, z, w, ζ, ξ, y , y , y , y p ,q , V , θ

y (p - z) + y (q - w) + y (V - ζ) + y (θ - ξ)

p - z q - w V - ζ θ - ξ

× × × ×
 

Where the last line includes additional penalty terms used for 

smoothness. These terms can be interpreted as the cost of the 

market not clearing.  

With standard algebraic manipulation the augmented  

Lagrangian can be rewritten more concisely as:

 

2 2 2 2

2 2 2 2

( ) ( )

( ) ( ) ( ) ( )

2 2 2 2

a a a a a

a

n n n n n n n n

n

L

g z f w k h



 

   



   

   





P Q V θ

p, q, V, θ, z, w, ζ, ξ, y , y , y , y p , q , V , θ

p - z + υ q - w + λ V - ζ + μ θ - ξ + ς

, 

where 


p
y

υ = ,


Q
y

λ = ,


V
y

μ =  and 


θ
y

ς = . Noting the 



  

association with the constraint shadow prices, we call 

, , ,    ”scaled prices”. 

Using devices and nets to group terminals and using the 
properties of indicator functions, the individual device 
problems may be written as [2]:  

1 1 1 1

2 2

2 2

22

2 2

2

}

( ) arg min{ ( )

ˆ ˆ[

ˆˆ ]

a a a a

k k k k

a a a a a a a a a

k k k k k k

a a a a a a a a

k k k k

a a a a a a




   







 

p ,q ,V ,θ

p , q , V , θ p ,q , V ,θ

p - p + p + υ q - q + q + λ

V - V - μ θ - θ - ς

,  

where 
1 1ˆk k k

n n np    , 
1 1ˆk k k

n n nq    , 

1 1k k k

n n nV     and 
1 1k k k

n n n     .  

 

D. Individual Device Problems 

As stated above, a sufficient condition for the algorithm 

to converge, is that  the individual device problems are 

convex. This raises an issue for line devices where the non-

convex AC flow equations must be incorporated in the 

generalized  Lagrangian. To address this issue, we use the 

relaxed branch flow model introduced in [9] and extended in 

[5], where (i) the voltage drop and complex power flow 

relations are squared eliminating angles and resulting in 

voltage magnitude appearing only in its square form [9], and 

(ii) the only remaining non-convex line current equality 

constraint, 
1 1

1 2

1

2 2

,

t t

t t

t

P Q

v




 , is relaxed to an inequality 

constraint [5]. Since lines are modeled as individual devices, 

the constraints on the injections of the sending or the 

receiving ends of the line are constraints of the individual 

distributed participant subproblem and are not included in the 

line subproblem. As such the above relaxation is shown in [6] 

to be exact.  

We explicitly show below the individual device 

problems: 
Generators:  

2 2 2

2 2

2 2, ,

2

2

2 2 2

( ) ( ) ( 1)

ˆ ˆmin [
2

ˆ ]

, 0,

t t t

V

t t t

k k k k k k

t t t t t t t t
p q v

k k

t t t

t t t t

p C C q c v

p p p q q q

v v

subject to p q C p v v v

 


 



    



       
 
 

       
 
   
 

    

 

Fixed load:

2 2

2 2

, , 2

2

ˆ ˆ[
2min

ˆ ]

, ,

t t t

i i

k k k k k k

t t t t t t t t

p q v
k k

t t t

t d t d t

p p p q q q

v v

subject to p p q q v v v


 



 
       

 
   
 

   

 

 

 

Curtailable load: 

2 2

2 2

, , 2

2

ˆ ˆ
2min

ˆ

tan( ),

[

]

,

t t t

i i i

k k k k k k

t t t t t t t t t t

p q v
k k

t t t

d t d t t d t

u p p p p q q q

v v

subject to p p p q p v v v


 





        

  

    

 
 
 
 
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III. ALGORITHM 

A. Iterative Process 

During each iteration cycle k, every device minimizes its 
own generalized objective function augmented by an 
additional term whose value depends on  the messages the 
device receives1 from its neighboring (or proximal)  nets  

through its terminals , ˆ ˆk k k k k k

a a a a a ap ,q , v , υ ,λ ,μ . The new power 

and voltage schedules 
1 1 1k k k

a a a

  
p ,q , v  that the device 

calculates are passed on to the nets through the device 
terminals. At the end of each iteration cycle, all nets calculate 

the new real and reactive power imbalance 
1 1ˆ ˆk k

n n

 
p ,q  and 

voltage residuals 
1k

n


v , update the scaled price variables 

1 1 1k k k

n n n

  
υ ,λ ,μ  and pass them on to each terminal 

associated with the net. Since each terminal is associated with 
a device, the corresponding devices receive this new 
information. Depending on the version of the algorithm, the 
nets may be also responsible for the update of net specific 
penalties (see next section). Following the data update, each 
device reoptimizes its sub-problem. The cycle repeats until 
the local or global stopping criterion is satisfied.  
Proximal message passing (PMP) algorithms guarantee [11]: 

 As k  , ˆ k p 0 , ˆ k q 0 ,
k V 0 , i.e. power 

balance and voltage consistency are achieved. 

 As k  ,
*( , , )k k k

a a a a

a

  p q V , i.e. operation 

is optimal. 

 As k  , ,k k P Q
ρυ π ρλ π , i.e. optimal 

Location Marginal Prices are found. 
 

B. Penalty Updates 

i. The same penalty is used at all nets and for all 

imbalances. It is updated after each iteration 

  In [2], the use of an iteratively updated penalty is 
implemented to speed up the algorithm. We define the vector 

of imbalances ˆ ˆ
k k k k

r = (p ,q , v )  and the change of the 

imbalances 
-1 -1 -1 -1 -1

ˆ ˆ ˆ ˆ ˆ ˆ
k k k k k k k k k k k

= [(p - p ) - (p - p ), (q - q ) - (q - q ), v - v ]s . We 

use the following penalty update rule:

1

(1 ), if 5 & 0.3

1.3 , if 5 & 0.3

[1 ( )], if 5 & 0.3

0.7 , if 5 & 0.3

, else

k k k k k k k

k k k k k

k k k k k k k k

k k k k k

k





 







    

  

     

  











r s r s r s

r s r s

r s s r r s

s r r s

Adapting the penalty means that the scaled prices also have 
to be adapted accordingly, therefore we have: 
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k





 


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1 1

1

k

k k

k





 


μ = μ . 

ii. Net Specific Penalty Updates 

The update of a common, network-wide penalty, requires 
central coordination and the requisite information 
communication. To decrease the communication requirement 
and to possibly increase the convergence speed, we consider 
using a net specific penalty and update it locally, i.e. within 
each net. We call this the net-specific penalty PMP 
algorithm. We define the vector of imbalances and the 

change of the imbalances per net as ˆ ˆ
k k k k

n n n n
r = (p ,q , v )  and 

-1 -1 -1 -1 -1
ˆ ˆ ˆ ˆ ˆ ˆ

k k k k k k k k k k k

n n n n n n n n n n n
= [(p - p ) - (p - p ), (q - q ) - (q - q ), v - v ]s ,  

and implement a net-specific penalty update similar to the 
network-wide rule described above. 

iii. Net-and-quantity Specific Penalty Updates 

We further define a net-and-quantity specific PMP 

algorithm where a different net specific  penalty is used to 

drive the imbalance of real power, reactive power, and 

voltage imbalances to zero. The resulting PMP algorithm 

with the use of net-and-quantity specific penalties is faster 

and more accurate since the primal quantities that the 

algorithm is solving for are not necessarily of the same order 

of magnitude. We  hence benefit from quantity specific 

penalties.Net-and-quantity specific update rules follow 

naturally from the above penalty update definitions. 

 

C. Stopping Criterion 

i. Central Stopping Criterion 

The stopping criterion used in [2] for a single hour 

problem is ,
k abs k abs

T T  r s . However, its 

implementation requires a central coordinator and the 
accompanying information communication. To lessen the 
PMP algorithm’s requisite communication burden, we 
propose a net specific stopping criterion.  

ii. Net Specific Stopping Criterion 

Since the imbalance and the change in the imbalance at  a 
given net is not known at other nets, an individual net 
determines the following binary flag after each iteration. 

3 3
1, if 5 10 and 5 10

( , )
0,else

k k

n n

flag n k

 
   






r s
.  

Moreover, at the beginning of iteration cycle k+1 each net 
communicates the value its flag had at the end of iteration 
cycle k to its direct upstream nets. The upstream net receives 
the message and at the end of iteration k+1 adds to it the 
value of its own flag and then communicates the sum to its 
direct upstream net. If the value of the sum at the substation 
or root node, equals the number of nets in the network, and if 
that value persists  for as many sequential iteration cycles as 
the number of nets in the longest line of our tree network, 
then it follows logically that all the flags were 1 at all nets at  
the same time [10] and that the algorithm has converged. 



  

D. Decreased Reliance on Global Coordination 

The use of the local penalty updates III.B.ii and III.B.iii 

together with  the local stopping criterion, enable the 

algorithm to work essentially without global coordination, a 

fact that allows asynchronous sub-problem solution that do 

not conform to the beat of a common clock. This makes  

more sub-problem solutions possible and does not limit the 

convergence time to the bottleneck of the slowest device 

sub-problem solution. Moreover, the information 

communication burden is significantly lower.   

We have noticed that when local penalties are used, 

several numerical issues appear with the use of the 

exponential penalty update rule used in [2]. These appear 

when the ratio of the norms is either too small or too large. 

This is also affected by the choice of the parameters scaling 

the ratio. In order to achieve convergence in the net and net-

and-quantity specific PMP algorithms, these parameters 

would have to be insignificantly small. This is precisely why 

we use an update rule which depends on the sum rather than 

the ratio of the imbalance and the change in the imbalance 

relative to the previous iteration. We note that, unlike the 

exponential penalty updates, the use of our update rule does 

not require that we specify a limited number of iterations 

beyond which the penalty is no longer updated. Whereas this 

limitation is implemented in [2] to avoid problems of large 

penalty changes when the algorithm stops, our penalty 

update rule depends on the sum of the norms, rather than 

their ratio, assuring that the change in the penalty is close to 

zero when the stopping rule is satisfied. This ensures, that 

during many iterations before the stopping rule is satisfied, 

the penalty has been practically constant.  

 

IV. RESULTS 
We first apply the PMP algorithms described above to a 

47-bus realistic distribution feeder from Southern California 
Edison as published in [5]. We examine the following: 
1) Constant penalty throughout the network with no 

iterative updates 
2) Penalty updating after each iteration but constant 

throughout the network  
3) Net-specific penalty with net-specific stopping criterion 

based on the sum of local stopping criterion flags. As can 
be seen in [5], the longest branch in this network is 12 
busses long, and so the algorithm will stop when the 
observed sum of flags at the root node equals 47 for 12 
sequential iterations.  

4) Net-and-quantity specific penalties with net-specific 
stopping criterion as in the case above. 

The required number of iterations till convergence for 
several penalty starting points are shown in Table I below. 

TABLE I. Number of iterations until convergence 

ρ(0) Constant 

Penalty 

Adaptive 

Common 

Penalty 

Net Specific 

Penalty 

Net& Quantity 

Specific Penalty 

5 1205 395 340 204 

10 2298 499 260 240 

20 4595 505 354 330 

50 >5000 498 440 341 

 

We notice a significant drop in the required number of 

iterations when we allow the penalty factor to change. Net 

specific and Net-and-quantity specific PMP algorithms not 

only converge faster but also require much less information 

communication.  

Tables II and III below show the average, minimum and 

maximum error in real and reactive power prices at 

convergence. These statistics are estimated relative to the 

exact values obtained in our benchmark solution of the 

market clearing problem.  

  
TABLE II. Deviation of real prices from their optimal values at 

convergence 

REAL PRICE DEVIATION (%) 

ρ0 Net specific ρ Net-and-quantity specific ρ 

Avg Min Max Avg Min Max 

5 0.066 0.001 0.542 0.025 0.001 0.107 

10 0.059 0.001 0.541 0.020 0.000 0.058 

20 0.088 0.000 0.530 0.019 0.003 0.078 

50 0.022 0.000 0.187 0.027 0.000 0.140 

 

TABLE III. Deviation of reactive prices from their optimal values at 

convergence 

REACTIVE PRICE DEVIATION (%) 

ρ0 Net specific ρ Net-and-quantity specific ρ 

Avg Min Max Avg Min Max 

5 0.628 0.128 0.804 0.106 0.002 0.211 

10 1.378 0.886 1.564 1.692 1.279 1.845 

20 1.329 0.881 1.494 1.425 1.101 1.579 

50 1.159 0.880 1.380 1.201 0.966 1.392 

 

Figures 1 and 2 below show the convergence of the real 

and reactive prices as obtained by the proximal message 

passing algorithm for the case of net-and-quantity specific 

penalties, starting from a penalty of 20.  

 

 
Figure 1. Average, Minimum and Maximum Deviation from Optimal Real 
Prices. 

 
Figure 2. Average, Minimum and Maximum Deviation from Optimal 
Reactive Prices. 
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By examination of the values of ,
k k

r s  we see that the 

decentralized stopping criterion is in fact tighter than the 

centralized stopping criterion proposed in [2]. This can also 

be verified by the fact that the real and reactive prices are 

closer to the optimal values obtained from the centralized 

AC OPF.  

Figures 3 and 4 below show the evolution of the net 

specific and net-and-quantity specific penalty factors for 

starting penalty equal to 20 for a randomly chosen net.  

 

 
Figure 3. Net Specific Penalty, starting from a penalty of 20, Net 37. 

  
Figure 4. Net-and-quantity Specific Penalty, starting penalty of 20, Net 37. 

PMP algorithms are superior in computational efficiency 

relative to the centralized market clearing algorithm. In a 

real implementation environment, the PMP algorithm may 

be applied on an hourly or five minute basis, in which case it 

can benefit from a hot start that determines the primal 

variable values from the previous hour or five minute 

solution. Numerical experience shows that this is indeed the 

case.  

We finally consider the scalability of the proposed PMP 

algorithms by applying them to the 253 bus distribution 

network investigated in our benchmark [1]. Measured by the 

number of devices, the 253 bus network is 6 times bigger. 

Table IV reports the number of iterations needed for 

convergence. Unlike the claim in [2] that problem size does 

not affect computational requirements, we observe an 

increase in computation requirements which we measure in 

terms of the number of iterations required to converge. As 

such, the increases appears to evolve with the square root of 

the network size. It is possible that an asymptotic result may 

be in the works, but we could not test it for the time being as 

we only had benchmark results for the 253 network.  

 

TABLE IV. Number of iterations needed for 253 nets versus 47 nets. 

ρ(0) NET SPECIFIC PENALTY NET & QUANTITY 

SPECIFIC PENALTY 

253 Bus Net 

Specific 

Penalty 

Increase In 

# of 

iterations 

wrt 47 bus  

253 Bus Net 

& Quantity 

Specific 

Penalty 

Increase in 

# of 

iterations 

wrt 47 bus  

5 619 1.821 480 2.353 

10 666 2.562 565 2.354 

20 717 2.025 742 2.248 

50 745 1.693 804 2.358 

 

We can use the results of Table IV to project the 

computational times needed for the solution of the 253 bus 

system using peer-to-peer implementation. Given the 

computational time of the bottleneck device, the proximal 

message passing algorithms needs approximately five times 

less computational effort than the centralized AC OPF 

required 51.42 seconds.  

 

V. CONCLUSION 

We have presented and tested several extensions of the 

PMP algorithms applied to the solution of complex 

distribution network power markets. Computational results 

have shown computational efficiency and accuracy, 

scalability and lower communication requirement benefits. 

In future work we will focus on asynchronous PMP 

algorithms. 
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